
Figure 4 shows one of the frames of the film record which depicts flow about a cylinder 
in a channel. The interference bands were obtained by the real-time method in accordance 
with the optical scheme in Fig. 3. Interference lines 2 and the position of the colored 
marking 1 are visible on the photograph. It can be seen that the marking and the interfer- 
ence lines are poorly defined. This is related to the fact that the interference lines are 
localized in the region between the object and the hologram. Thus, the objective lens of 
the film camera must be directed between the sharp image of the colored marking and the lines 
of the interferogram. 

For simultaneous sharp recording of the colored marking and interference bands, it is 
necessary to significantly stop down the objective lens. This cannot always be done, since 
it entails the use of highly sensitive film with a large grain size and, thus, low resolu- 
tion with regard to the information obtained. These problems can be circumvented either 
by using a light-amplifying apparatus such as the high-speed camera in Fig. 3 or by record- 
ing the interferograms together with the image of the colored marking through the use of 
two exposures with holograms from the focused image. 
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INFLUENCE OF GAS FLOW ON THE DISTRIBUTION FUNCTION 

OF DISSOCIATING MOLECULES IN VIBRATIONAL LEVELS 

G. Ya. Dynnikova UDC 533.6.011.8 

i. The influence of gas motion on the reaction kinetics of strongly excited molecules 
was examined in [1-4] - where it was established that significant nonequilibriumcorrections, 
in magnitude, that are proportional to the spatial derivative of the macroscopic quantities, 
their powers, and derivatives, occur in the expressions for the macroscopic reaction rate. 
It is shown in [5-8] that upon taking more complete account of the properties of the kinetic 
equation solutions for high molecule energies they depend in a nonlinear manner on the spa- 
tial derivatives. In particular, the rate of diatomic molecule dissociation - truncated har- 
monic oscillators - depends exponentially on V u, where u is the flow velocity [8] in a 
nonisothermal convective flow. 

Nonequilibrium correction to the reaction rate is a result of perturbations of the mole- 
cule distribution in the vibrational levels. The solution obtained in [8] for the distribu- 
tion function possesses the property of locality, which is not fully in agreement with the 
explanation presented in [8], whence there results that the population of the upper ener- 
getic levels do not succeed in following the change in the translational temperature. An- 
other interpretation of the results obtained is given below. 

2. As is known [9], the law of conservation of the distribution functions holds in 
the model of a harmonic oscillator with an infinite number of levels if the initial distribu- 
tion is a Boltzmann one. The population of the i-th vibrational level x i at each instant is 
here determined by the formula 

x i  = ( t  - -  q)qi ( 2 . 1 )  
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where q is described by the equation 

dq/dt = (q -- q,)/T. ( 2.2 ) 

Here ~-i = Pl0Z(l - q); q, = exp(-E1/KT); P10 is the transition probability from the first 
level to the ground state; Z is the collision frequency; E I is the energy of a vibrational 
quantum; K is the Boltzmann constant; and T is the translational temperature. 

For a slow change in the temperature when 
dq, __ E1Td(lnT ) 

q, dt ~-~"'-"--~<<1, 

an approximate solution of (2.2) is q , ~ , q , ( i  dq_,~ q~V dt/" In this case the solution (2.1) can 

be interpreted as a Boltzmann distribution with a lagging temperature T I 

( K_~I' ) ( T ) = (d( lnT) l - t  q = e x p  -- , T I ~ T  l - - ~ ,  0 \---~--7 , (2 .3)  

The molecu le  d i s t r i b u t i o n  in  v i b r a t i o n a l  l eve l s ,  ob ta ined  in  [8] in the  model of a t r u n -  
ca t ed  harmonic oscillator with dissociation, can also be interpreted as quasistationary that 
holds in the isothermal case, but corresponding to the lagging temperature T I. This is con- 
firmed by comparing the graphs in Fig. i. Curves 1 and 3 are obtained in [8] and are the 
molecule distribution functions at the vibrational energy E (in the continuous spectrum ap- 
proximation), referred to the Boltzmann distribution for ~/e = -O.17 and 0.17, respectively. 
Line 2 corresponds to the quasistationary distribution in the isothermal case, while lines 
4 and 5 are obtained by renormalization of distributions 1 and 3 to a Boltzmann distribution 
with lagging temperature calculated by means of (2.3). It is seen that lines 4 and 5 prac- 
tically coincide with 2. Therefore, the distribution functions of [8] are close to a quasi- 
stationary distribution with a lagging temperature. 

As mentioned above, in the case of a harmonic oscillator with an infinite number of 
levels the Boitzmann distribution with intrinsic vibrational temperature is conserved inde- 
pendently of the rate of change of the translational temperature. It is interesting to clar- 
ify whether the quasistationary form of the distribution is conserved in the truncated 
harmonic oscillator model for an arbitrary rate of temeprature change. 

3. To answer this question we first obtain a quasistationary distribution function 
for the isothermal case in a convenient form. Exactly as in [8], we consider the dissocia- 
tion process of molecules comprising a small impurity in an inert gas; therefore, we will 
take account only of the V-T exchange reaction. Moreover, we assume that the atom concen- 
tration of ,the dissociation products is sufficiently small; consequently, we can neglect 
the influence of recombination. We shall consider that on reaching the level with energy 
Q (Q = nE I) the molecule instantly dissociates. Under these assumptions, the level-by-level 
kinetic equations have the form [9] 
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I dN = p~oZ [q + 1) (x~+~ - -  qxO - -  ~ (x~ - -  q x ~ - O ] ,  x ~ ~v V i  

i = O , t  . . . . .  n - - t , x ~ = O  
(3.1) 

(N is the number of dissociating molecules). 

Applying the double-sunnnation operator to the left and right sides of (3.1) 

h j 
l--q 

A(~)----qk+l~-'(i+t)qj+l. 
3 =0 /:0 

m 

and introducing the notation xi = xi/xo, ~ . . . .  
T dN 
N dt ~ we c o n v e r t  ( 3 . 1 )  t o  t h e  form 

k j 
y. Y x, 
~=o (J + l)qJ+l i=o 

- _ q ~ + l ,  k----O, . . . .  n - - l .  ---~Xh+ 1 

After multiple application of the operator A(k ) we obtain 

h 

xh = qa ~ ( ,  M)i q)(1), ( 3 . 2 )  
~ = 0  

where ~k (~ = 1 and the functions ~k (i) are determined by using the recursion relationship 

h ~ ; - -1  

q~(o "%, t -  q '~, ,#.o<+1) (3.3) 

For k = n we have a closed equation to determine ~: 

;~ (--  ~)~ ~ O. 
' i=O 

(3.4) 

The expression (3.2) is an exact solution of the system (3.1). 
right side agrees with the Gottlieb polynomial 

r------O 

It can be shown that its 

The connection between the Gottlieb polynomials and the distribution functions for the trunc- 
ated harmonic oscillator model was established first in [10]. The Gottlieb polynomials are 
obtained in this paper in another more convenient form for subsequent operations. Let us 
just note that the double-summation procedure has been used to obtain successive approxima- 
tions in [ii, 12]. 

It is shown in [10] that the general nonstationary solution of the system of level-by- 
level equations for a truncated harmonic oscillator is expressed in the form 

{=1 

Here ~i are roots of the Gottlieb polynomial determined by (3.4) while the coefficients =i 
depend on the initial molecule distribution over the levels. All the roots of the Gottlieb 
polynomials are positive [i0], where for each polynomial s with n(l - q) m 1 the minimal 
root is many times less than the remaining roots; consequently, in the quasistationary case 

i dN ~0 where ~0 is the minimal root of (3.3) the macroscopic dissociation rate equals N d--7=--T' 

The corresponding distribution function is described by (3.2) for ~ = ~0. 

Analysis of the functions ~k (i) shows that the main contribution to the sum ~ ~'~) 
i=l 

is given by the first term for ~ = ~0. This permits obtaining an approximate expression for 
and x k for n(l - q) ~ 1 
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--, )-, 

-x, 

X 0 

= ~ n (1 - q) q', 

q~ [1 - -  qn-#~n (1 - -  q) ( t  - -  q~) 
for k ( t - - q ) ~ l ,  

f o r  k ( i - - q )  >> i ,  

t + ~  q~ t - -  ,~, 
h=1 ~--~'D'D, 1 -- qnn (1 -- q) In [n (t -- q)] 

which are in g o o d  agreement with the results of preceding researches. 

4. Let us turn to nonisothermal flow. The level-by-level kinetic equations have the 
form 

dx i t dN  Plo  z [(i + 1) ( x i+ l  - -  qxi) - -  i (xi - -  qxi -1)] ,  
d-T + x i  N dt - -  

i = O  . . . . .  n - - L  x , ~ - O .  

(4.t) 

Let us substitute (3.2) in these equations for q = q~ by considering q~ a.quantity not known 
in advance, and let us use the following properties of the functions q k(i): 

dq (1 -- q) q 

d ~  '~) _ k ~,~) 
dq (i --  q) q 

(see the Appendix for the proof of these properties). We obtain 

t t - -  q~ ,,l, d,% ~ ~,  ( 4  2 ) 
i - _ q  x xk  - -  x , , - l  + --Y--" ~-d-~q, ~ 1 t - -  ~0~-i  ~ j) = P~~ (q - -  qO (Tk - -  x k - O "  

There results from these equations that no qz exists independent of k and identically satis- 
fying all the equations for k = i, ..., n - I. Thus, for k = i there follows dql/dt = (q - 
ql)/T from (4.2) while dql/dt = q - ql/[~(l - ql)] for k = n - i. If ql << 1 (the 
low-temperature case KT << El), these equations can be considered equivalent. This means 
that in this case (3.2) with a lag determined by (2.2) will be a solution of the system (4.1). 

E 1 
It here possesses local properties only if the inequality ~-~i-~<<i is satisfied. In the 

opposite case, the relaxation equation (2.2) must be solved to determine the lag. Let us 
also note that for ql << I the quasistationary distribution function (3.2) is close to a 
Boltzmann one at all energetic levels. 

Let us convert (4.1) by making the substitution x i = xix 0 and using the equation for 
x0: 

dx o i d N  
d-T + x~ ~ W = x~176 {x~ -- q)" 

Consequently, 

We will seek the solution of (4.3) under the condition ~/I01 ~ 1 in the form 

(4.3) 

7k----- q~ ~ (--~t) j (4.41 
{=I j=o 

Here ~ is t]he minimal root of the equation }J (--~)J T~ ) = 0, while the functions Tn(J) are 
j=0 

defined by (3.3) for q = ql, where ql is as yet unknown. Substituting (4.4) into (4.3), 
we have 
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h k 
- k (- ~)~ ~(2 + ~ ~ (-.)~ 4:i~- 

i=0 
(4.5) 

- - ( l - - q l )  d-~-~_Ei(--l i) i- l(P (i) + ( q - - q i )  k ( - - ~ ) ' q @ - -  

h--1 -- " ] ~+~ 
q~ ( -  t~) ~ ~ - (qk+~ - q~) (k + t) ( -  t~) ~ -"~ ~h+l -~ 

i=o A i=0 
~ , . . 

-[- (qh - -  ql) -~k X ( -  ~t)' q)(~--) 1 = T (l - -  ql) X ( -  ~()' q)~i) X 

X dt q i d t ] ,  q = = q ,  k = l  . . . . .  n - - l .  

The q u a s i s t a t i o n a r y  s o l u t i o n  o f  t h i s  s y s t e m  c a n  be f o u n d  by  an  i t e r a t i o n  m e t h o d  by s u b -  
s t i t u t i n g  t h e  v a l u e  o f  q i  f r o m  t h e  p r e c e d i n g  a p p r o x i m a t i o n  i n t o  t h e  r i g h t  s i d e  o f  t h e  e q u a -  
t i o n s .  T h u s ,  i f  q i  = q i s  t a k e n  a s  t h e  z e r o t h  a p p r o x i m a t i o n ,  w h i c h  c o r r e s p o n d s  t o  a d i s -  
t r i b u t i o n  f o r  T = c o n s t ,  t h e n  t h e  s o l u t i o n  o f  ( 4 . 5 )  w i t h  r i g h t  s i d e s  e q u a l  t o  z e r o  w i l l  be  
t h e  f i r s t  a p p r o x i m a t i o n .  

The s y s t e m  o f  e q u a t i o n s  o b t a i n e d  i n  s u c h  m a n n e r  c o n t a i n s  n e q u a t i o n s  and  n unknowns  
q i ,  . . - ,  qn a s  w e l l  a s  t h e  d e r i v a t i v e  d q i / d t .  I t  c a n  be  s p l i t  i n t o  one  d i f f e r e n t i a l  e q u a -  
t i o n  f o r  qz and  n - 1 a l g e b r a i c  e q u a t i o n s  f r o m  w h i c h  q2 ,  . . . ,  qn c a n  be  f o u n d  a s  f u n c t i o n s  
o f  q i  and  d q i / d t .  O p e r a t i n g  i n  s u c h  m a n n e r ,  we o b t a i n  t h e  f i r s t  i t e r a t i o n  

~--1 
dq 1 1 Z m 

q~ = ql + T--~ ~-i ql amCra, (4.6) 
k71 ahak--t m=h 

m ,i (i) 
where am=~l (_~) ~; 

i = 0  

�9 d~ ~,  i ( -  ,~-1 _.) ~,~-~. p) ~m + 6m a m - - - -  , era--- ( l - - q l ) ~  ~ ql / 
i=1 

= ,1 6 = (1 - -  ql) Tq i q~iah (~(k i) ka .  tql  al~-i ~ta~ 
= i~l L h = l  

o r  a p p r o x i m a t e l y  f o r  n ( l  - qz )  >> 1, (1 - qz )  ~ I 

6 ~ n 2 (1 - -  ql) 2 q~ In [n (1 - -  ql)l, 

( dq 1 I --  qki-1 
.-1 k (i -- ql) << |' ql + -r 7/- 6 k (l - q )  q~ ' 

| dql n2(17_~)ql  I n + ,  I k ( i - q l ) > > i '  
qh = lq i @ ~ - ~  kqi [ ( n - -  k) (1 - -  qi) >> 1, 

dql [" qi)], (n -- k)(t--ql)<<l. 
nq~ -h+l  l 

q l + ~  ~ -  i l - - y ( n - - k ) ( l - -  

(4.7) 

The differential equation for qi in this approximation has the form 

dqi/dt = (q - -  ql)/[~(1 - -  8) 1, ( 4 . 8 )  

for y~-~ ..xdq<<1, ql=qL[l----~dq~(1--6)]J" The expression (4.7) for 6 can be considered for (i- 

q) ~ 1 approximately a function of Y = 8/KT = nEi/KT ~ n(l - q); thus: 6 = y2e-Y inY. The 
maximal value 6 ~ 0.49 is reached for Y = 3, while as Y + ~, 6 + 0. 

We make the next iteration by substituting the solution (4.6) into the right side of 
(4.5). Estimates show that the second approximation found in this manner differs from the 
first by corrections of the order of (T/8) 2. 
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Using (~.7) we find the function 

the k-th level: 

h 

{=I 

in the expression (4.4) for the population of 

h 

a q i  - -  q l  

i=1 ql 

i=1 i=1 \~=1 

i -- q~-~ 
T 6 q~------v-, k (l -- #0 << l, 

8 In {.Ik) Ik (1 -- q~) >> 1, 
0 k (1 - -  ql) q~-~ In [n (l - -  ql)] ' ( (n - -  k) (t - -  ql) 
2: T '  k = n - - l ,  

>>I. 

It is hence seen that the distribution obtained differs from the lagging one by a correction 
of the order of T/8. Correspondingly, the macroscopic dissociation rate (i/N)(dN/dt) equals 
the dissociation rate for a lagging temperature to the accuracy of terms of order T/8: 

Nt dNdt = -- Pl~ -- Pl~ ( ] - - q l ) 2 q ?  (1 + ~) 

El i  ~11-1 The function ql and its corresponding lagging temperature TI =~ In are determined 

from (4.8). The correction 8 here exerts substantial influence on the dissociation rate 
if (T/ISI)Y3e -YInY is of the order of or greater than unity. 

In conclusion, we note that the results obtained in this paper refer to the case of 
convective flow without taking account of diffusion transfer. As follows from [13], the 
diffusion process in a spatially inhomogeneous flow can exert substantial influence on the 
molecule distribution function over vibrational levels. 

We shall prove the equalities 

APPENDIX 

d T  -- q (i - q) 

k 
d T =  q { t -  q) - -  ( h . 2 )  

The validity of (A~I) is seen easily by differentiating the expression resulting from the 
definition of ~k(k): ~k (k) = (i - q)k/k!qk. The equality (A.2) is evident for i = 0. For 
i > 0 we prove it by induction. For all i ~ m let (A.2) be true. For i = m + 1 we have 

h p--1 h p--I #~(hm +1) # q) q~-P 
v 

p 
p = m + l  r = m  p ~ m  + l r = m  

k--1 ~(pm) 

- , 

w h i l e  on  t h e  o t h e r  h a n d  

T~m r=m 

h--I 

-- ~k-1 j = q ~r 

(i-- q) qh+1 r=~ 

results from the definition of the functions @k (i). Therefore, the equality (A.2) is also 
true for i = m + I, meaning for all i (0 < i < k) also. 

i. 

2. 
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NONISOTHERMALFLOW OF A POLYATOMIC GAS IN A CHANNEL 

AND THE THERMOMOLECULAR PRESSURE DIFFERENCE EFFECT 

V. M. Zhdanov, V. A. Zaznoba, and I. V. Safonova UDC 533.6.011.8 

In [i] the nonisothermal flow of a rarefied polyatomic gas in a plane channel was con- 
sidered, using the method of [2-4]. One of the results of [i] was an expression for the 
thermomolecular pressure difference (TPD) arising at the ends of the channel for a fixed 
temperature difference. It is known [5-13] that measurement of the TPD for polyatomic gases 
can serve as an independent source of information on the characteristics of the inelastic 
collisions between molecules, since the effect depends upon the translational part of the 
thermal conductivity (xt), which in turn depends explicitly on the rotational and vibration- 
al collision numbers Z r and Z v. This was first discussed in [5, 14], where a theoretical 
expression for the TPD was obtained using the "dusty-gas" model. For small Knudsen numbers 
the dependence of the TPD effect on xt also follows from a rigorous kinetic analysis of vis- 
cous and thermal slipping in a polyatomic gas [15, 16]. The use of the dusty-gas model to 
interpret the experimental results involves, however, a whole set of parameters resulting 
from the model itself (empirical constants) and from the choice of an "average" temperature 
of the gas in the channel [6, 17]. This is evidently the reason for the rather large scat- 
ter in the results for Z r for several polyatomic gases, as obtained by different authors 
[18]. A second cause of discrepancies between the results is the use in certain papers of 
nonrigorous expressions for the translational Euchen factor, in which the combined effect 
of the rotational and vibrational degrees of freedom of the molecules is not taken into ac- 
count in a sufficiently correct way. 

Since measurements of the TPD effect are usually done using packets of circular cylin- 
drical capillaries, a more reliable method of interpreting the results should be based on 
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